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Here, we present a series of thrombin inhibitors that were gener-
ated by using powerful computer-assisted multiparameter optimi-
zation process. The process was organized in design cycles, starting
with a set of randomly chosen molecules. Each cycle combined
combinatorial synthesis, multiparameter characterization of com-
pounds in a variety of bioassays, and algorithmic processing of the
data to devise a set of compounds to be synthesized in the next
cycle. The identified lead compounds exhibited thrombin inhibi-
tory constants in the lower nanomolar range. They are by far the
most selective synthetic thrombin inhibitors, with selectivities of
>100,000-fold toward other proteases such as Factor Xa, Factor
XIIa, urokinase, plasmin, and Plasma kallikrein. Furthermore, these
compounds exhibit a favorable profile, comprising nontoxicity,
high metabolic stability, low serum protein binding, good solubil-
ity, high anticoagulant activity, and a slow and exclusively renal
elimination from the circulation in a rat model. Finally, x-ray
crystallographic analysis of a thrombin–inhibitor complex revealed
a binding mode with a neutral moiety in the S1 pocket of thrombin.

crystallographic structure � drug design � early adsorption � toxicity �
genetic algorithm

Thromboembolic diseases, such as myocardial infarction, stroke,
and deep vein thrombosis, are a leading cause of death,

particularly in the Western world. The past decade has seen major
progress in the development of antithrombotic agents that are
tailored to (i) exhibit antiplatelet activity, (ii) aid in the lysis of blood
clots, or (iii) affect the activity and generation of thrombin. The
latter thrombotic agent is a serine protease, which exerts its effects
in the final steps of the blood coagulation cascade and in the
activation of various cell types, including platelets. Despite great
research efforts and the resulting impressive number of high-
affinity thrombin inhibitors identified, there is still only limited
clinical use of some parenterally available preparations of thrombin
inhibitors. The reasons that render many inhibitors unattractive for
clinical applications are manifold. A considerable number of
thrombin inhibitors developed so far suffer from poor selectivity,
inherent toxicity, high-plasma protein binding, poor metabolic
stability, rapid elimination from the blood, low anticoagulant
activity, or poor oral bioavailability, to name but a few problems.
Because of the complexity of the problem, lead optimization is a
tedious task. On the one hand, high-throughput assay systems only
coarsely replace a living organism. This finding is particularly true
for complex parameters such as bioavailability. On the other hand,
the optimization problem is necessarily a multiparameter problem.
The ideal functional compromise does not need to coincide with the
optima of single parameters. Thus, very often, improvements
gained for one parameter are only achieved at the expense of
impairments of several others. Nevertheless, through laborious and
costly medicinal chemistry, along with high-throughput screening
programs, significant progress has been achieved in recent years.
For some inhibitor candidates, efficacy in in vitro coagulation assays,

and even a moderate oral availability, has now been reported (see
ref. 1 for review). This finding is particularly true for compounds
with basic group bioisosteres incorporated to bind to the acidic
S1 pocket of thrombin. However, the ideal thrombin inhibitor has
yet to be discovered.

We now present a series of lead molecules that has been obtained
by an accelerated type of computer-assisted drug discovery (CAD-
DIS) approach (2). The original procedure has now been further
improved to serve as a powerful tool in the simultaneous optimi-
zation of a multitude of pharmaceutically relevant properties. One
major advantage of our approach is that optimization does not use
or depend on a priori information about the target, e.g., structural
data on thrombin. Instead, it relies exclusively on data acquired
within the cyclic process of optimization. Concerning the optimi-
zation of thrombin inhibitors, each cycle comprised synthesis of
drug candidates, characterization of these compounds in a number
of bioassays, and algorithmic processing of the data to generate or
improve a predictive model that links compound structure and
molecular properties, and which is used to design a new set of
compounds. Starting from a set of randomly chosen compounds, a
multiparameter optimization was carried out in eight design cycles.
Synthesis and experimental fitness determination of a total of only
�1,000 different compounds was necessary to yield lead com-
pounds show extremely favorable properties concerning thrombin
inhibition, selectivity, metabolic stability, (low) serum protein bind-
ing, (low) toxicity, activity in in vitro coagulation assays, and (slow)
elimination from the bloodstream, making them attractive candi-
dates for further development.

Materials and Methods
Peptide Synthesis. Peptides were synthesized by using an automated
peptide synthesizer (MultiPep, Intavis, Koln, Germany) following
the Fmoc-�tBu standard peptide synthesis protocol suggested by
the supplier.

Assays. Peptides were tested for their thrombin inhibitory activity by
using a fluorogenic assay as described (3) with the use of human
thrombin (Sigma-Aldrich, Deisenhofen, Germany). The trypsin
inhibitory activity was obtained in a similar way by using Tos-Gly-
Pro-Arg-MCA and bovine trypsin (Sigma-Aldrich) as substrate.
Assays were carried out with the assistance of a robotic workstation
(CyBi-screen-machine, CyBio, Jena, Germany) that included a
Polarstar fluorescence reader (BMG Labtechnologies, Offenburg,
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�To whom correspondence may be addressed. E-mail: aschwie1@gwdg.de or thuerk@
matrix-as.com (computation).

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0501983102 PNAS � June 14, 2005 � vol. 102 � no. 24 � 8597–8602

EV
O

LU
TI

O
N



Germany). Assay data are mean values obtained from at least three
independent measurements. Test compound concentrations were
as indicated. Standard methods were applied to determine in vitro
coagulation, serum protein binding, metabolic stability, and
cytotoxicity.

Computational Methods. The CADDIS approach, which is based on
a highly efficient type of genetic algorithm, has been described in
great detail elsewhere (2). Previously, CADDIS has been applied
only to single-parameter optimizations such as the generation of
thrombin inhibitory peptides. In the latter case, ‘‘fitness’’ of a
compound was defined by a single parameter. However, for the
multiparameter optimization process described herein, the overall
fitness was calculated as the geometrical mean of single fitness
values fi of all parameters i without different weighting. Values for
each individual parameter varied between 0% and 100% for the
desired function, e.g., 100% for a complete thrombin inhibition or
no trypsin inhibition at a given compound concentration. To
primarily obtain smaller molecules, the fitness function includes a
penalty for large sequences as described (2).

Crystallography. Human �-thrombin was crystallized by using stan-
dard methods (4). Details of the structure determination will be

described in an accompanying publication. The atomic coordinates
have been deposited with Protein Data Bank (PDB), ID code
1XM1.

For detailed protocols and the list of building blocks, refer to
Supporting Materials and Methods and Table 3, which are published
as supporting information on the PNAS web site.

Results
Computer-Assisted Molecular Optimization. Previously, our CAD-
DIS approach had proved to be well suited for the generation of
thrombin inhibitory peptides in a single-parameter optimization
process (2). Here, we apply the same concept to the problem of
multiparameter optimization. In this case, the fitness function that
was used to evaluate each molecule uses a geometric mean crite-
rion, including the individual fitness of all parameters without
different weighting.

The overall process was organized in design cycles. To start with,
a set of 170 randomly chosen peptides with sequence lengths
between 3 and 10 amino acids was generated by using solid-phase
automated peptide synthesis. Rather than betting on a small set of
‘‘promising’’ building blocks, 66 building blocks that were as chem-
ically diverse as possible were used. Synthesized compounds were
characterized with respect to inhibition of thrombin and trypsin,

Fig. 1. Evolution of thrombin and trypsin inhibitory activities, toxicity, and hemolytic activity as obtained for compounds originating from design cycles 0–8.
Compounds with toxicities or hemolytic activities of �40% at compound concentrations of 200 �M are red. Trypsin and thrombin inhibition were measured by
using standard amidolytic assays. In trypsin assays, a final inhibitor concentration of 150 �M was used. Thrombin assays contained a final inhibitor concentration
between 150 �M and 250 nM as indicated. Occasionally occurring negative values for inhibition refer to compounds enhancing enzyme activity in the assay.
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serum protein binding, metabolic stability, toxicity, hemolysis, and
solubility (cycle 0). After algorithmic processing of the data, a set
of 96 compounds was determined by the algorithm and subse-
quently synthesized. The compounds were again characterized in
the aforementioned assays (cycle 1), and the data were used to
devise a new set of molecules. This procedure was repeated
afterward with 96–170 compounds synthesized and characterized
per cycle. In the final cycle (cycle 8), only 26 compounds were
synthesized and tested.

In Fig. 1, the results concerning thrombin and trypsin inhibitory
activities, toxicity, and hemolysis are depicted for compounds
originating from the design cycles 0–8. Each subsequent cycle
revealed molecules with increased thrombin inhibitory activity. In
cycle 0, the most active molecules exhibited thrombin inhibitory
activities with Ki values ��1 �M (data not shown). However, in
cycles 7 and 8, the best inhibitors showed Ki values in the lower
nanomolar range and an excellent specificity, i.e., negligible inhib-
itory activities toward trypsin (see also Table 1). In cycle 0 and
throughout most subsequent cycles, most compounds did not
exhibit pronounced toxic or hemolytic activity. However, an excep-
tion was in cycle 4, where half of the compounds tested showed a
significant toxic and�or hemolytic effect. Until then, toxic com-
pounds appeared only scarcely; in other words, the training set for
the parameter ‘‘toxicity’’ was strongly biased toward nontoxic
compounds and thus incomplete! It was not surprising, then, that
a small subpopulation of toxic (and related) compounds could arise
transiently. However, in the last two cycles (7 and 8), all compounds
proved to be nontoxic, probably also due to the more focused
character of the corresponding libraries. Except for compounds
from cycles 0 and 1, most molecules from subsequent cycles
exhibited metabolic stabilities �60%, which correlates to the
increased fraction of nonnatural amino acids as building blocks in
late cycles. Solubility was never a problem throughout all cycles.
This finding is possibly due to the chemical nature of the com-
pounds, i.e., the polarity of the peptide backbone. This polarity
could also explain why very strong serum protein binders were only
occasionally identified throughout the optimization. From cycle 2
on, a fraction of 50–70% of the molecules displayed a serum protein
binding of �60%.

The evolution of optimized molecules in the scope of the
computer-assisted drug design process is reflected by changes in the
sequence population of subsequent cycles. Peptides from cycles 0
and 1 generated essentially the same sequence distribution, i.e., the
same mean pair distance as calculated for a random sample of the
concomitant sequence space. In particular, no preferential se-
quence motif could be traced. In cycle 2, a considerably large
fraction (10%) of peptides contained an N-terminal Ac-L-arginine.
This fraction increased to 38% in cycle 3 and remained constant
until cycle 5 before it decreased again. In cycle 3, for the first time,
larger fractions of the population comprised common short se-
quence motifs such as Ac-L-Arg-L-Trp (12%) and Ac-L-Arg-D-
cyclohexylalanine (Cha) (8%) at the N termini of the peptides. The
most active molecules among the latter were two relatively small
molecules, Ac-L-Arg-D-Cha-D-Phg-D-Tyr-L-Arg and a variant miss-
ing the C-terminal arginine. Interestingly, a two-error mutant of
NSCI 521, the most active compound in previous single-parameter
screenings (2), was also identified among the most active sequences
of cycle 3. In cycles 4 and 5, the fraction of molecules containing the
N-terminal motif Ac-L-Arg-D-Cha increased to 21% and 36%,
respectively. Among the most active peptides were three small
molecules, Ac-L-Arg-D-Cha-L-Pro-D-Tyr-L-Arg and two 2-error
mutants thereof. In cycle 6, a fraction of 28% of the molecules
comprised variants of the latter that contained one mutation,
deletion, or insertion. The same sequence was further varied in
cycle 7. Here, however, the motif D-Cha-L-Pro-D-Tyr-X (2%) was
largely replaced by D-Cha-L-Aze-D-Tyr-X (35%). Twenty-nine
percent of all sequences had an L-Arg at the X position, whereas
52% contained an L-homoArg at this position. Among the most
active sequences were three pentapeptides, Ac-L-Ala-D-Cha-L-Aze-
D-Tyr-L-homoArg (7-1), Ac-L-Arg-D-Cha-L-Aze-D-Tyr-L-
homoArg (7-4), and NH2-L-Arg-D-Cha-L-Aze-D-Tyr-L-homoArg
(7-8). The final cycle, cycle 8, focused exclusively on one-error
mutants of the latter sequences. The most successful compounds
were Trx-D-Cha-L-Aze-D-Tyr-L-homoArg (8-1), and a variant
thereof, which was guanylated at the N terminus (8-5). Compounds
7-8, 8-1, and 8-5 are depicted in Fig. 2.

Characterization of Optimized Molecules. The most active thrombin
inhibitors from cycles 7 and 8 were thoroughly characterized, e.g.,

Table 1. Properties of selected thrombin inhibitors

Values

Selected inhibitors from cycles 7–8 Reference inhibitors

7-1 7-4 7-8 8-1 8-5 Argatroban NAPAP Melagatran

Ki [�M]
Human thrombin 0.080 0.009 0.056 0.008 0.003 0.038 0.009 0.006
Bovine thrombin 0.150 0.021 0.073 0.013 0.0072 0.019 0.006 0.0036
Trypsin �1,000 �1,000 �1,000 �1,000 �1,000 4.250 690 0.004
Factor Xa �1,000 �1,000 �1,000 �1,000 �1,000 210 7.9 9.4
Factor XIIa —* �1,000 �1,000 �1,000 �1,000 �1,000 450 10.4
Urokinase �1,000 �1,000 �1,000 �1,000 �1,000 �1,000 230 7.9
Plasmin �1,000 �1,000 �1,000 �1,000 �1,000 600 30 1.4
Plasma kallikrein — �1,000 �1,000 �1,000 �1,000 �1,000 14 0.69

IC200, �M
Thrombin time 0.24 0.034 0.24 0.040 0.040 0.062 0.045 0.015
aPTT 6.0 1.0 2.8 0.95 0.60 0.42 0.50 0.24
Prothrombin time 14 2.0 — 2.0 1.45 0.66 1.0 0.37
Toxicity [%]
HeLa (30 �M) 0 0 0 1.7 0 — — —
HeLa (200 �M) 17.1 — 0 5.0 2.9 — 13 12
Hemolysis 10 — �2 �2 �2 — — —

ADME
SPB, % 59 39 2 22 29 — 86 7
Metabolic Stab, % 88 80 92 70 76 — 97 93
Solubility, 200 �M 197.9 — 200 200 200 — — —

ADME, absorption, distribution, metabolism, elimination; SPB, serum protein binding; P-IC200, inhibitor concentration doubling the
respective clotting time; TT, thrombin time; aPTT, activated partial thromboplastin time.
*Not measured.
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with respect to selectivity and anticoagulant activity (Table 1).
Overall, these molecules exhibit excellent thrombin inhibitory ac-
tivities with Ki values in the lower nanomolar range. For compounds
7-4, 8-1, and 8-5, the Ki values measured with human thrombin were
9, 8, and 3 nM, respectively; this finding is comparable with, or
slightly better than, the Ki values of Na-(�-naphthylsulfonyl-glycyl-
4-amidinophenylalanine piperidide (NAPAP) (9 nM) and melagat-
ran (6 nM) measured in the same assay.

To study the binding mode of 8–5 within the active site, a number
of derivatives of compound 8-5 were synthesized and characterized
(Table 2). In general, all tested variants of 8-5 (including 7-1, 7-4,
7-8, and 8-1) showed an increase in their Ki values measured with
human thrombin. Like many of the known small-molecule throm-
bin inhibitors directed against the active site, all compounds iden-
tified in the CADDIS process contained basic moieties that could
very well occupy the S1 site of thrombin. However, neither of the
basic moieties, tranexamic acid and homoarginine, found in the
inhibitors, has so far been identified as a building block of selective
inhibitors of thrombin or other closely related enzymes involved in
the coagulation cascade. Only certain plasma kallikrein-selective
inhibitors were reported to contain tranexamic acid (5). Because
the tranexamic acid building blocks in 8-1 and 8-5 can be replaced
not only by L-arginine (7-4 and 7-8) but also by L-alanine (7-1)
without dramatically impairing inhibitory activity, we were inclined
to assume that tranexamic acid is not a superior candidate for S1 site
occupation. The second basic moiety in the newly generated
inhibitors is L-homo-Arg. Here again, replacement by other amino
acids including noncharged residues such as L-Met resulted in only
moderate increases in the Ki value of 3 to 14-fold, indicating that the
side chain of L-homo-Arg is also not the P1 moiety. The small
hydrophobic S2 pocket of thrombin is typically filled with a small
hydrophobic element such as proline. In the series of inhibitors,
L-Aze is the best P2 candidate. Substitution by L-Pro resulted in a
26-fold increase in the Ki value. Larger moieties dramatically impair
thrombin inhibitory activity (data not shown). The larger hydro-
phobic pocket usually accommodates bulkier hydrophobic residues
such as D-Phe. The best candidate in the series of inhibitors is
D-Cha. Support for this thesis comes from a derivative with
substitution of D-Cha by D-Phe, which resulted in a moderate
19-fold increase in the Ki value. Further support comes from the fact
that the D-Cha-L-Aze motif, which is common to this class of
inhibitors, resembles the D-Chg-L-Aze motif of melagatran. In the
crystallographic structure of the thrombin–melagatran complex,
D-Cha and L-Aze occupy the S4 and S2 pockets, respectively (6).
From this analogy, we assumed that D-Tyr could very well be the
P1 moiety. However, only substitution of D-Tyr by the uncharged
D-Phe, but not by typical basic P1 moieties such as D�L-Arg (as in
Phe-Pro-Arg-chloromethylketone) or D-Phe-4-amidine (contain-
ing the benzamidine moiety of melagatran), largely preserves
thrombin inhibitory activity. Thus, by adhering to the formal
analogy between melagatran and the inhibitor series, one definitely
had to assume (i) an uncharged moiety to occupy the S1 pocket, and

(ii) a geometry of the inhibitors bound to the active site of thrombin
that is significantly different from that of melagatran. To get things
straight concerning this point, we solved the structure of the
complex of thrombin with compound 8-5 by x-ray crystallography.

Human �-thrombin was crystallized in the presence of inhibitor
benzamidine and inhibitory peptide hirugen 56-63 (hirugen) by
using standard methods (4) in space group C2. The crystals
diffracted to a resolution of 2.3 Å. With the exception of the
149-loop (chymotrypsinogen numbering of thrombin), the main
chain of the thrombin molecule was fully defined by electron
density, exhibiting a conformation virtually identical with the
thrombin–hirugen complex (PDB ID code 1HGT) used for the
solution of the structure.

The inhibitor could be almost fully traced, with the exception of
a few atoms in side chains pointing toward the bulk solvent with only
weak electron density. It was assumed that not all active sites were
occupied by inhibitor molecules, and thus, the occupancy of the
inhibitor atoms was set to 0.8. With the D-Cha and L-Aze moieties
(positions 2 and 3), the inhibitor binds to the S4�S2 pockets,
respectively (Fig. 3A). Whereas L-Aze moieties of both inhibitors
almost ideally can be superimposed, the D-Cha moiety of 8-5
reaches, by 2.4 Å, deeper into the S4 pocket as compared with
D-Chg in the melagatran structure. The D-Tyr moiety (position 4)
indeed inserts in the S1 pocket of thrombin. Because of the kink in
the Tyr side chain, the side chain necessarily slots in the S1 pocket
other than an extended L-Arg or L-Lys. The OH group of D-Tyr
nevertheless adapts a position nearly identical to one of the terminal
nitrogens of either L-Arg in Phe-Pro-Arg-chloromethylketone or
benzamidine in melagatran as P1 residue. It forms a rectangular
bonding network, including a direct charged hydrogen bond to
Asp-189, and to a bridging water molecule (water 38), which
connects the D-Tyr OH with the second carboxyl oxygen of
Asp-189, all at ideal hydrogen-bonding distances of �2.6 Å (Fig.
3B). This crystal structure is the first, to our knowledge, of an
uncharged side chain forming a charged hydrogen bond with
Asp-189 at the bottom of the pocket.

During the course of computer-assisted optimization, inhibitor
candidates were trained to be highly selective, i.e., not to inhibit
trypsin as a representative of other serine proteases. Not surpris-
ingly therefore, the majority of optimized molecules in cycles 7 and
8, including the inhibitors presented in Table 1, did not affect
trypsin activity to a significant extent. Because none of the deriv-

Table 2. Characterization of compound 8-5 derivatives

No. Sequence*

Percent
inhibition
(trypsin)†

Ki, nM
(thrombin)

8-5 G-Trx D-Cha L-Aze D-Tyr L-hArg 15 3
8-5A G-Met 7 23
8-5B G-Gly 0 133
8-5C D-Phe 5 57
8-5D L-Pro 6 80
8-5E D-Phe 11 7
8-5F D-Arg 14 405
8-5G L-Tyr 18 488
8-5H L-Arg 4 �1,000
8-5I D-Ph1 18 483
8-5J D-Ph2 20 183
8-5K D-Ph3 26 �1,000
8-5L Gly 5 42
8-5M L-Met 0 13
8-5N L-Lys 8 10
8-5O AcLys 8 17

*G-Trx, guanylated tranexamic acid; G-Met, guanylated D-Met; G-Gly, guany-
lated Gly; D-Ph1, D-Phe-4-CN; D-Ph2, D-Phe-4-amidine; D-Ph3, D-Phe-4-
hydroxy-amidine; AcLys, L-(�-N-acetyl)-lysine.

†Percent trypsin inhibition at an inhibitor concentration of 100 �M.

Fig. 2. Structures of thrombin inhibitors 7-8, 8-1, and 8-5 identified in design
cycles 7 and 8 of the computer-assisted optimization procedure.
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atives of 8-5 showed a dramatic loss in selectivity against trypsin,
selectivity presumably is not caused by a single specificity conferring
element. Remarkably, selection against inhibition of the single
‘‘antitarget’’ trypsin also had an impact on the capabilities of
inhibiting other proteases. Factor Xa, Factor XIIa, urokinase,
plasmin, and Plasma kallikrein were not inhibited by the best
inhibitors of cycles 7 and 8 (with a selectivity of �100,000-fold).
Note that these inhibitors even discriminate between human and
bovine thrombin. In contrast, argatroban, NAPAP, and melagatran
exhibited only a moderate selectivity. In particular, melagatran,
which nevertheless is believed to have sufficient selectivity toward
the fibrinolytic enzymes at the necessary therapeutic concentra-
tions, is well known for its inhibitory activity against other serine
proteases such as trypsin (7).

Although not directly assessed in the course of the optimiza-
tion, compounds 7-4, 8-1, and 8-5 also showed anticoagulant
properties comparable with that of argatroban, NAPAP, and
melagatran. As for the latter, the concentrations effective in
doubling the respective plasma clotting times (IC200) in the
thrombin time, partial thromboplastin times, and prothrombin
time assays in vitro have the typical ratio of �1:10:20, which is
known for a variety of selective thrombin inhibitors with low or
moderate serum protein binding (8).

For all selected inhibitors (Table 1), metabolic stability was
high (� 70%), and solubility was excellent. In addition, the
inhibitors showed low, or at least moderate, serum protein-
binding capacities (� 60%).

Although we did not include a direct measure of elimination from

the circulation as a parameter in the multiparameter optimization
process, we nevertheless tested several of the thrombin inhibitors
for their elimination from the bloodstream (Fig. 4) in a rat model
system. Compounds 7-8, 8-1, and 8-5 revealed a delayed elimination
from the bloodstream that was comparable with, or even slower
than, that of melagatran. Only compound 7-4 showed a faster

Fig. 4. Elimination of selected compounds after i.v. application of a 1 mg�kg
(ratmodel).Eliminationfromthebloodstream. (Inset)Excretionthroughthebile.

Fig. 3. Structure of the complex between human thrombin,
hirugen, and compound 8-5. (A) Overall stereoview in stan-
dard orientation (active-site cleft running from left to right)
slightly rotated around the y axis. The thrombin surface is
shown with electrostatic coloring (red, negative potential;
blue, positive potential). Compound 8-5 is represented as a
stick model. Ordered water molecules are shown as green
balls. (B) View of the S1 pocket. Asp-189 of thrombin and D-Tyr
of 8-5 are shown as stick models. Water 38 is represented as a
blue ball. The thrombin surface is shown with electrostatic
coloring. Hydrogen bonds are represented as dotted lines.
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elimination that was intermediate between that of melagatran and
NAPAP. Next, we tested two of the selected thrombin inhibitors for
their biliary excretion, which usually is taken as an important
mechanism for presystemic elimination, thereby limiting oral bio-
availability. Whereas NAPAP, melagatran, and 7-4 underwent
significant elimination through the bile (71%, 49%, and 51% of the
dose within 6 h, respectively), no biliary excretion was detected for
7-8, which (like 8-1 and 8-5) was exclusively renally excreted. It is
interesting to note that the only structural difference between 7-4
and 7-8 is an acetyl moiety at the N terminus of the peptide.
Previous studies with NAPAP analogs (9, 10) had revealed that
derivatives that contained more than one basic group showed lower
systemic and biliary clearance compared with NAPAP. This finding
is in line with our findings that a free, i.e., a positively charged N
terminus as in compounds 7-8, 8-1, and 8-5 clearly increases the
half-life in the bloodstream, compared with that of compounds with
an acetylated N terminus such as 7-4.

Discussion
Previously, we have demonstrated that CADDIS, which is based
on a recently developed type of algorithm (2), is well applicable
to the optimization of macromolecules, such as RNAs and
peptides, with respect to single-molecular properties, e.g.,
thrombin inhibition. Here, we show that the same concept is also
valid as an approach to the problem of multiparameter optimi-
zation, and thereby, this opens up another perspective in early
drug discovery. Whereas the definition of ‘‘fitness’’ is clear for
a single-parameter optimization, different definitions may apply
for a multiparameter optimization. Our studies revealed that the
geometric mean of nonweighted fitness values of each, individual
parameter provides a simple and appropriate fitness function. To
primarily obtain small-molecule drug candidates, the fitness
function includes a penalty for large sequences as described
(2). To prove the feasibility of CADDIS in the context of
multiparameter optimization, we sought to develop thrombin
inhibitors with a property profile that makes them attractive
candidates for further preclinical and clinical development.

Starting from a set of 170 randomly chosen compounds, eight
design cycles with a total of �1,000 compounds turned out to be
sufficient to identify a novel series of thrombin inhibitors. These
compounds combined powerful thrombin inhibitory activity
with an extraordinarily high selectivity, negligible toxicity, ex-
cellent solubility, moderate serum protein binding, high meta-
bolic stability, and a slow systemic plasma clearance in a rat
model. Mainly because of their unmatched selectivity along with
their slow and exclusively renal clearance, certain advantages
over other small-molecule thrombin inhibitors may be envisaged
concerning, e.g., indications like arterial thrombosis, where
usually higher concentrations of the drug are needed (11-13),
and hence, the risk of side effects may be higher. Because the
inhibitor series necessarily contains a neutral P1 moiety and
largely preserves inhibitory activity when basic residues are

substituted by noncharged residues, it has potential for further
development into orally available compounds.

However, computer-assisted multiparameter optimization is not
restricted to the development of thrombin inhibitors but has also
been successfully applied e.g., to the optimization of antibiotics
(data not shown). Therefore, parallel optimization of a multitude of
molecular properties can indeed generate valuable lead molecules
in a significantly less costly and time-consuming process as com-
pared with concepts based on high-throughput activity screening
and subsequent optimization of primary hits with respect to addi-
tional properties. In addition, the risk of eliminating seemingly
suboptimal candidate molecules that may nevertheless be superior
in their capability for further development too early in the drug
developmental process is significantly lower compared with a
sequentially organized high-throughput screening approach that
largely voluntarily retains a certain percentage of the initial hits for
further development. However, as with any sampling strategy that
is not testing all members of a given compound space, there is
certainly no guarantee to identify ‘‘the fittest’’ molecule. Because
within the overall process, molecules may improve in different ways,
i.e., properties, chances are low that molecular solutions become
trapped in a low-grade local optimum. Nevertheless, a prerequisite
to successful optimization is the generation of high-quality data
obtained in pharmacologically relevant assays. Therefore, assay
data quality has to be monitored on the basis of standard statistical
procedures (14, 15). A major advantage of the discovery approach
described herein is that only medium throughput is mandatory.
Therefore, complex and expensive, i.e., more predictive assay
systems early in drug discovery, can now be afforded. However,
even in this case, a multiparameter optimization process would not
necessarily yield a satisfactory lead molecule. This finding is par-
ticularly true when the optimization comprises conflicting proper-
ties. For thrombin inhibitors, very often, basic groups such as
guanidine moieties proved to be favorable for S1 binding, i.e.,
enzyme inhibition, and slow elimination, but they significantly
hinder acceptable enteral absorption. In these cases, only prodrug
approaches like the one that has been applied with melagatran to
yield H 376�95 (16) may increase the structural and functional
variability to meet all of the necessary demands. The main limita-
tion of the current computer-assisted multiparameter optimization
approach is its inability to perform on nonpolymeric small mole-
cules. However, this restriction could be overcome, e.g., by using a
fragment-based type of encoding (17, 18). Altogether, computer-
assisted multiparameter optimization may add a valuable option to
present drug discovery approaches and speed the development of
new patentable drugs.
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